Adobe to Represent Intelligent Alerts

Intelligent Alerts is a virtual helper for Analytics with artificial intelligence support
25 September 2018   1031

Adobe has added a virtual assistant with artificial intelligence support in Adobe Analytics - Intelligent Alerts. It offers the user new data that he probably has not encountered yet. This should make the analysis of the material deeper.

Artificial intelligence studies how a user works with Analytics, and offers the most relevant data. The user receives tips that should help in the evaluation of information. The Intelligent Alerts system provides for setting up and personalizing notifications: what notifications and how often the user will receive them.

The new assistant is part of the Adobe Sensei platform, which the company plans to integrate into all Adobe products.

Artificial intelligence is used to solve various problems. In September 2018, employees of the artificial intelligence lab MIT created a neural network, which learned to predict events in video clips, guessing intentions.

Nvidia to Open SPADE Source Code

SPADE machine learning system creates realistic landscapes based on rough human sketches
15 April 2019   679

NVIDIA has released the source code for the SPADE machine learning system (GauGAN), which allows for the synthesis of realistic landscapes based on rough sketches, as well as training models associated with the project. The system was demonstrated in March at the GTC 2019 conference, but the code was published only yesterday. The developments are open under the non-free license CC BY-NC-SA 4.0 (Creative Commons Attribution-NonCommercial-ShareAlike 4.0), allowing use only for non-commercial purposes. The code is written in Python using the PyTorch framework.

Sketches are drawn up in the form of a segmented map that determines the placement of exemplary objects on the scene. The nature of the generated objects is set using color labels. For example, a blue fill turns into sky, blue into water, dark green into trees, light green into grass, light brown into stones, dark brown into mountains, gray into snow, a brown line into a road, and a blue line into the river. Additionally, based on the choice of reference images, the overall style of the composition and the time of day are determined. The proposed tool for creating virtual worlds can be useful to a wide range of specialists, from architects and urban planners to game developers and landscape designers.

Objects are synthesized by a generative-adversarial neural network (GAN), which, based on a schematic segmented map, creates realistic images by borrowing parts from a model previously trained on several million photographs. In contrast to the previously developed systems of image synthesis, the proposed method is based on the use of adaptive spatial transformation followed by transformation based on machine learning. Processing a segmented map instead of semantic markup allows you to achieve an exact match of the result and control the style.

To achieve realism, two competing neural networks are used: the generator and the discriminator (Discriminator). The generator generates images based on mixing elements of real photos, and the discriminator identifies possible deviations from real images. As a result, a feedback is formed, on the basis of which the generator begins to assemble more and more qualitative samples, until the discriminator ceases to distinguish them from the real ones.