Apple to Roll Out FoundationDB 6.0.15

FoundationDB is used by Apple itself and supports such languages ​​as C / C ++, Python, Perl, Ruby, Java, Go, Node.js, etc
20 November 2018   1249

Apple introduced the release of 6.0.15 cross-platform DBMS FoundationDB for processing large sets of structured data. This is the first stable release of the sixth branch of the DBMS. FoundationDB is a class of NoSQL systems that manipulate data in key / value format. The database is used by Apple itself and supports such languages ​​as C / C ++, Python, Perl, Ruby, Java, Go, Node.js and PHP.

Main new features:

  • Now it is possible to host a cluster with storage and groups of nodes in different regions. In this case, one region receives write permissions, while the rest synchronously or asynchronously replicate data. In the event of a failure in the main region, the right to record is transferred to another.
  • TLS-plugin is statically linked to client and server executable files, and not a separate library. Added support for verification of peers using the values ​​specified in the subjectAltName certificate field. To do this, use the extension X.509 SAN (Subject Alternative Name). Added the ability to automatically reload certificates after renewal.
  • The fileconfigure command has been added to the terminal, which allows you to configure the database based on a JSON document;
  • Improved transaction logging, load balancing, transaction commit, key caching, and CPU utilization. Accelerated disaster recovery.

FoundationDB supports full-fledged transactions that meet ACID requirements. This DBMS can be used by other systems for distributed information storage in a consistent state. The use of different query languages ​​is supported.

In addition, FoundationDB has these features:

  • store any data types within the same database. Data is presented in a key / value format.
  • work with SSD drives and a bunch of RAM + drive. In the latter case, only transaction logs are flushed to disk.
  • easy to scale.
  • to function effectively on standard equipment. As stated, the DBMS requires minimal hardware costs, but it can work with high loads.
  • used in industrial infrastructure.

Apple acquired FoundationDB in 2015, and in April 2018 opened its source code. It is written in C ++ and is available under the Apache 2.0 license.

LLVM 10.0.0 to be Released

New version of the popular development toolkit brings, among other things, support for the C++ Concepts
26 March 2020   950

After six months of development, the release of the LLVM 10.0 project, a GCC-compatible toolkit (compilers, optimizers, and code generators), compiling programs into an intermediate bitcode of RISC-like virtual instructions (a low-level virtual machine with a multi-level optimization system), is presented. The generated pseudo-code can be converted using the JIT compiler into machine instructions directly at the time of program execution.

Among the new features of LLVM 10.0, there are support for C ++ Concepts (C ++ Concepts), termination of the launch of Clang in the form of a separate process, support for CFG checks (control flow guard) for Windows, and support for new CPU features.

The main innovations of LLVM 10.0:

  • New interprocedural optimizations and analyzers have been added to the Attributor framework. The prediction of the state of 19 different attributes, including 12 attributes of 12 LLVM IR and 7 abstract attributes such as liveness, is provided.
  • New built-in compiler matrix mathematical functions (Intrinsics) have been added, which, when compiled, are replaced by effective vector instructions.
  • Numerous improvements to the backends for the X86, AArch64, ARM, SystemZ, MIPS, AMDGPU, and PowerPC architectures. Added support for Cortex-A65, Cortex-A65AE, Neoverse E1 and Neoverse N1 CPUs. For ARMv8.1-M, ​​the code generation process has been optimized (for example, support for loops with minimal overhead has appeared) and support for auto-vectorization using the MVE extension has been added. Improved support for CPU MIPS Octeon. PowerPC includes vectorization of mathematical routines using the MASSV (Mathematical Acceleration SubSystem) library, improved code generation, and optimized memory access from loops. For x86, the processing of vector types v2i32, v4i16, v2i16, v8i8, v4i8 and v2i8 has been changed.
  • Improved code generator for WebAssembly. Added support for TLS (Thread-Local Storage) and atomic.fence instructions. Significantly expanded support for SIMD. WebAssembly object files added the ability to use function signatures with multiple values.
  • When processing cycles, the MemorySSA analyzer is used to determine the dependencies between different memory operations. MemorySSA can reduce compilation and execution time, or can be used instead of AliasSetTracker without sacrificing performance.
  • The LLDB debugger has significantly improved support for the DWARF v5 format. Improved build support with MinGW and added the initial ability to debug Windows executable files for ARM and ARM64 architectures. Added descriptions of options offered when autocompleting input by pressing tabs.
  • Enhanced LLD Linker Features. Improved support for the ELF format, including full compatibility of glob templates with the GNU linker, added support for the compressed debug sections ".zdebug", added the PT_GNU_PROPERTY property to determine the section (can be used in future Linux kernels), implemented modes "-z noseparate-code", "-z separate-code" and "-z separate-loadable-segments". Improved support for MinGW and WebAssembly.

Get more at the release notes.