Google to Open Dopamine Source Code

The tool for neural network training is based on TensorFlow, a library for machine learning
30 August 2018   1511

Google Brain Team published the source code of the Dopamine framework, which allows the implementation of training with reinforcement for neural networks. The repository contains 15 Python files with documentation. The tool is based on TensorFlow, a library for machine learning.

The framework is based on the Arcade Learning Environment platform, which evaluates the performance of AI using video games. Developers also got access to sets of source data for training and tests on 60 games supported by the platform. This approach makes it possible to standardize the process of working with neural networks and to obtain reproducible results.

Dopamine supports 4 learning models: deep Q-learning, C51, Implicit Quantile Network and a simplified version of Rainbow.


Dopamine

Simultaneously with the placement of the source code, Google launched a website with tools to visualize the process of interacting with AI via Dopamine. The site supports work with multiple agents simultaneously, provides access to statistics, training models and planning through TensorBoard.

Pablo Samuel Castro and Marc G. Bellemare, Google Brain Team researchers expressed the hope that the flexibility and ease of use of the tool developed by their group will inspire developers to try out new ideas.

This is not Google's first step towards increasing the availability of tools for neural networks. In 2017, the company announced the launch of the project Google.ai, a project to democratize the achievements in the field of machine learning.

Get more info at GitHub.

MelNet Algorithm to Simulate Person's Voice

It analyzes the spectrograms of the audio tracks of the usual TED Talks, notes the speech characteristics of the speaker and reproduces short replicas
11 June 2019   318

Facebook AI Research team has developed a MelNet algorithm that synthesizes speech with characteristics specific to a particular person. For example, it learned to imitate the voice of Bill Gates.

MelNet analyzes the spectrograms of the audio tracks of the usual TED Talks, notes the speech characteristics of the speaker and reproduces short replicas.

Just the length of the replicas limits capabilities of the algorithm. It reproduces short phrases very close to the original. However, the person's intonation changes when he speaks on different topics, with different moods, different pitches. The algorithm is not yet able to imitate this, therefore long sentences sound artificially.

MIT Technology Review notes that even such an algorithm can greatly affect services like voice bots. There just all communication is reduced to an exchange of short remarks.

A similar approach - analysis of speech spectrograms - was used by scientists from Google AI when working on the Translatotron algorithm. This AI is able to translate phrases from one language to another, preserving the peculiarities of the speaker's speech.