MIT CSAIL to Fight AI Bias

As reported, bias in AI leads to poor search results or user experience
19 November 2018   756

A team of scientists from the Laboratory of Informatics and Artificial Intelligence MIT has published a paper dedicated to the fight against the misconceptions that arise in neural networks in the learning process. The main attention is paid to the problem of preserving the accuracy of predicted AI results.

Since scientists have been trying to cope with the problem of discriminatory misconceptions of AI for the first year, there are traditional methods of operations in this area. Usually, for correcting training, a certain amount of information is added to the data set, which allows the neural network to obtain more accurate data on a particular sample.

Thus, in one experiment, the AI ​​should have noted the expected level of income of individuals in the presented selection. As a result of a discriminatory misconception that appeared in the process of learning, AI twice as often marked men as individuals with high incomes. Increasing the number of female profiles in a training dataset allowed us to reduce the error by 40%.

The problem with traditional methods is that the data sets prepared in this way do not reflect the actual distribution of the population. This increases the fallacy of predictions issued by AI.

In their work “Why Is My Classifier Discriminatory?” Scientists offer several possible solutions to the problem. They believe that increasing the size of the training dataset without changing the proportions of the represented gender, social and racial groups will allow the AI ​​to cope with discriminatory errors independently. According to the researchers, the collection of additional information from the same source that provided the initial data packet will avoid covariant bias.

This method can be costly, as it will have to pay for the work of specialists marking up additional data. However, researchers are confident that in many cases such costs will be justified.

The second option is clustering groups of the population most vulnerable to discrimination and the subsequent separate processing of these clusters with the introduction of additional variables. Scientists suggest using this method when obtaining additional data is difficult or impossible.

Nvidia to Open SPADE Source Code

SPADE machine learning system creates realistic landscapes based on rough human sketches
15 April 2019   656

NVIDIA has released the source code for the SPADE machine learning system (GauGAN), which allows for the synthesis of realistic landscapes based on rough sketches, as well as training models associated with the project. The system was demonstrated in March at the GTC 2019 conference, but the code was published only yesterday. The developments are open under the non-free license CC BY-NC-SA 4.0 (Creative Commons Attribution-NonCommercial-ShareAlike 4.0), allowing use only for non-commercial purposes. The code is written in Python using the PyTorch framework.

Sketches are drawn up in the form of a segmented map that determines the placement of exemplary objects on the scene. The nature of the generated objects is set using color labels. For example, a blue fill turns into sky, blue into water, dark green into trees, light green into grass, light brown into stones, dark brown into mountains, gray into snow, a brown line into a road, and a blue line into the river. Additionally, based on the choice of reference images, the overall style of the composition and the time of day are determined. The proposed tool for creating virtual worlds can be useful to a wide range of specialists, from architects and urban planners to game developers and landscape designers.

Objects are synthesized by a generative-adversarial neural network (GAN), which, based on a schematic segmented map, creates realistic images by borrowing parts from a model previously trained on several million photographs. In contrast to the previously developed systems of image synthesis, the proposed method is based on the use of adaptive spatial transformation followed by transformation based on machine learning. Processing a segmented map instead of semantic markup allows you to achieve an exact match of the result and control the style.

To achieve realism, two competing neural networks are used: the generator and the discriminator (Discriminator). The generator generates images based on mixing elements of real photos, and the discriminator identifies possible deviations from real images. As a result, a feedback is formed, on the basis of which the generator begins to assemble more and more qualitative samples, until the discriminator ceases to distinguish them from the real ones.