Researchers to Develop Accent Detection AI

The team of scientists was from Cisco, the Moscow Institute of Physics and Technology and the Higher School of Economics
13 July 2018   346

A team of scientists used machine learning to develop an improved model for speech recognition. This is reported by Venture Beat.

Previously, scientists manually identified phonological similarities between units of language in general American English and the pronunciation dictionary of the Carnegie Mellon University. To create an improved model, they went non-standard way and allowed it to automatically form the rules. Then, it compared the resulting unique list with a set of examples from George Mason University's speech accents archive.

More non-native accented speech data is necessary to enhance the performance of … existing [speech recognition] models. However, its synthesis is still an open problem.
 

Researchers

Based on the received examples, the team created a phonetic data set, through which a neural network, often used for speech recognition, was trained. The accuracy of the definition of words, after overcoming the mark of 800,000 examples, was 59%.

The study was called preliminary due to fewer sounds in the Carnegie-Mellon University dictionary. Despite phonetic coincidences in 13 out of 20 dictionary comparisons, scientists managed to increase the data array from 103 thousand phonetic transcriptions with one accent to 1 million samples with several accents.

AI to be Used to Create 3D Motion Sculptures

The system developed by the MIT and Berkeley scientists is called MoSculp and is based on artificial inteligence
21 September 2018   134

MoSculp, the joint work of MIT scientists and the University of California at Berkeley, is built on the basis of a neural network. The development analyzes the video recording of a moving person and generates what the creators called "interactive visualization of form and time." According to the lead specialist of the project Xiuming Zhang, software will be useful for athletes for detailed analysis of movements.

At the first stage, the system scans the video frame-by-frame and determines the position of key points of the object's body, such as elbows, knees, ankles. For this, scientists decided to resort to the OpenPose library, developed by the Carnegie Mellon University. Based on the received data, the neural network compiles a 3D model of the person in each frame, and calculates the trajectory of the motion, obtaining a "motion sculpture".

At this stage, the image, according to the developers, suffers from a lack of textures and details, so the application integrates the "sculpture" in the original video. To avoid overlapping, MoSculp calculates a depth map for the original object and the 3D model.

MoSculp 3D Model
MoSculp 3D Model

The operator can adjust the image during the processing, select the "sculpture" material, color, lighting, and also what parts of the body will be tracked. The system is able to print the result using a 3D printer.

The team of researchers announced plans to further develop the MoSculp technology. Developers want to achieve from the processing system more than one object on the video, which is currently impossible. The creators of the technology believe that the program will be used to study group dynamics, social disorders and interpersonal interactions.

The principle of creating a 3D model based on human movements has been used before. For example, in August 2018, scientists at the same University of California at Berkeley demonstrated an algorithm that transfers the movements of one person to another.