Scientist to Use AI For Newborns Diagnostics

The main goal of the study is to create an algorithm that detects deviations in the development of limb movements of newborns in the first few months
12 July 2018   1136

A team of scientists from the University of Southern California and the University of Madrid used AI to detect abnormalities in the development of newborns. The algorithm classifies the movements of the limbs and according to these data creates a forecast is for 1-12 months. This is reported by Venture Beat.

Scientists used the data of the laboratory for monitoring neuromotorics of newborns, located at the University of Southern California. Accelerometers, gyroscopes and magnetometers were attached to the feet of children. The algorithm collected data from the sensors for the left and right legs, then calculated the duration of the movements, the average and maximum acceleration, and other indicators.

Then the developers manually entered the age of the child, a scaled development score and information about it (typical or atypical), collected the predictive model. After using binary classification algorithms, taking into account the 3 best results for minimizing errors.

Based on the obtained data, artificial intelligence predicted delays in development for the first six months with an accuracy of 83.9%. For a period of 6-12 months, the accuracy was slightly lower - 77%. Detailed text and results are published in the article.

[S]tudies have demonstrated that kinematic variables, such as kicking frequency, spatiotemporal organization, and interjoint and interlimb coordination, are different between infants with typical development … and infants at risk … including infants with intellectual disability, myelomeningocele, Down syndrome, as well as infants born preterm.


The main goal of the study is to create an algorithm that detects deviations in the development of limb movements of newborns in the first few months. This will allow to take purposeful actions. Studies have shown that between children with normal development and children in the risk group, there are kinematic differences. The latter include the frequency of movement of the legs, spatial orientation and coordination of the limbs.

TensorFlow 2.0 to be Released

New major release of the machine learning platform brought a lot of updates and changes, some stuff even got cut
01 October 2019   172

A significant release of the TensorFlow 2.0 machine learning platform is presented, which provides ready-made implementations of various deep machine learning algorithms, a simple programming interface for building models in Python, and a low-level interface for C ++ that allows you to control the construction and execution of computational graphs. The system code is written in C ++ and Python and is distributed under the Apache license.

The platform was originally developed by the Google Brain team and is used in Google services for speech recognition, facial recognition in photographs, determining the similarity of images, filtering spam in Gmail, selecting news in Google News and organizing the translation taking into account the meaning. Distributed machine learning systems can be created on standard equipment, thanks to the built-in support in TensorFlow for spreading computing to multiple CPUs or GPUs.

TensorFlow provides a library of off-the-shelf numerical computation algorithms implemented through data flow graphs. The nodes in such graphs implement mathematical operations or entry / exit points, while the edges of the graph represent multidimensional data arrays (tensors) that flow between the nodes. The nodes can be assigned to computing devices and run asynchronously, simultaneously processing all the suitable tensors at the same time, which allows you to organize the simultaneous operation of nodes in the neural network by analogy with the simultaneous activation of neurons in the brain.

Get more info about the update at official website.