What is YAPF?

A formatter for Python files, developed by Google team
30 October 2017   2948

What is YAPF?

Most of the current formatters for Python --- e.g., autopep8, and pep8ify --- are made to remove lint errors from code. This has some obvious limitations. For instance, code that conforms to the PEP 8 guidelines may not be reformatted. But it doesn't mean that the code looks good.

YAPF takes a different approach. It's based off of 'clang-format', developed by Daniel Jasper. In essence, the algorithm takes the code and reformats it to the best formatting that conforms to the style guide, even if the original code didn't violate the style guide. The idea is also similar to the 'gofmt' tool for the Go programming language: end all holy wars about formatting - if the whole codebase of a project is simply piped through YAPF whenever modifications are made, the style remains consistent throughout the project and there's no point arguing about style in every code review.

The ultimate goal is that the code YAPF produces is as good as the code that a programmer would write if they were following the style guide. It takes away some of the drudgery of maintaining your code.

Code examples

YAPF takes this code:

x = {  'a':37,'b':42,

'c':927}

y = 'hello ''world'
z = 'hello '+'world'
a = 'hello {}'.format('world')
class foo  (     object  ):
  def f    (self   ):
    return       37*-+2
  def g(self, x,y=42):
      return y
def f  (   a ) :
  return      37+-+a[42-x :  y**3]

and reformat it into:

x = {'a': 37, 'b': 42, 'c': 927}

y = 'hello ' 'world'
z = 'hello ' + 'world'
a = 'hello {}'.format('world')


class foo(object):
    def f(self):
        return 37 * -+2

    def g(self, x, y=42):
        return y


def f(a):
    return 37 + -+a[42 - x:y**3]

See GitHub for more information. 

Nvidia to Open SPADE Source Code

SPADE machine learning system creates realistic landscapes based on rough human sketches
15 April 2019   674

NVIDIA has released the source code for the SPADE machine learning system (GauGAN), which allows for the synthesis of realistic landscapes based on rough sketches, as well as training models associated with the project. The system was demonstrated in March at the GTC 2019 conference, but the code was published only yesterday. The developments are open under the non-free license CC BY-NC-SA 4.0 (Creative Commons Attribution-NonCommercial-ShareAlike 4.0), allowing use only for non-commercial purposes. The code is written in Python using the PyTorch framework.

Sketches are drawn up in the form of a segmented map that determines the placement of exemplary objects on the scene. The nature of the generated objects is set using color labels. For example, a blue fill turns into sky, blue into water, dark green into trees, light green into grass, light brown into stones, dark brown into mountains, gray into snow, a brown line into a road, and a blue line into the river. Additionally, based on the choice of reference images, the overall style of the composition and the time of day are determined. The proposed tool for creating virtual worlds can be useful to a wide range of specialists, from architects and urban planners to game developers and landscape designers.

Objects are synthesized by a generative-adversarial neural network (GAN), which, based on a schematic segmented map, creates realistic images by borrowing parts from a model previously trained on several million photographs. In contrast to the previously developed systems of image synthesis, the proposed method is based on the use of adaptive spatial transformation followed by transformation based on machine learning. Processing a segmented map instead of semantic markup allows you to achieve an exact match of the result and control the style.

To achieve realism, two competing neural networks are used: the generator and the discriminator (Discriminator). The generator generates images based on mixing elements of real photos, and the discriminator identifies possible deviations from real images. As a result, a feedback is formed, on the basis of which the generator begins to assemble more and more qualitative samples, until the discriminator ceases to distinguish them from the real ones.